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Representation of sl2

sl2(C) = {A ∈ End(C2) | Tr(A) = 0}

has the standard basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
with the following commutator relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

A representation of sl2(C) consists of the following data

A collection of vector spaces (weight spaces) Vλ, λ ∈ Z

Linear maps e : Vλ → Vλ+2, f : Vλ → Vλ−2

(ef − fe)|Vλ
= λIdVλ
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Representation of sl2

The above data of the representation can be characterized in the following
picture

....
e
,,
Vλ−2

f

jj

e
**
Vλ

e
,,

f
ll Vλ+2

f

jj

e
))....

f
ll

such that (ef − fe = h)|Vλ
= λIdVλ

.

Remark

We can consider a more general case, which is the representation of the
quantum group Uq(sl2). The third data is replaced by
(ef − fe)|Vλ

= [λ]qIdVλ
, where [λ]q := qλ−1 + qλ−3 + ...+ q−λ+1 is the

quantum integer.
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Categorification

Main idea: Replace vector spaces by categories and linear maps by
functors.

Such a process can help us to understand deeper structures.

It has many applications, e.g., modular representation theory,
equivalence of categories, knot homologies....etc.

Geometry is a good resource for producing categories.

It can be decategorified to recover the original vector space.

vector spaces
categorify

// categories

decategorify

kk
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The categorical sl2 action

weight space Vλ, λ ∈ Z // weight category K(λ) λ ∈ Z

...Vλ

e
--
Vλ+2...

f

kk
// ...K(λ)

E ..
K(λ+ 2)...

F
mm

Thus the picture at categorical level becomes

....
E ..
K(λ− 2)

F

jj

E
,, K(λ)

E ..

F
nn K(λ+ 2)

F

ll

E
**....

F
nn

The commutator relation (ef − fe)|Vλ
= λIdVλ

should be lifted to

EF|K(λ)
∼= FE|K(λ)

⊕
Id⊕λ

K(λ), if λ ≥ 0

FE|K(λ)
∼= EF|K(λ)

⊕
Id⊕−λ

K(λ), if λ ≤ 0
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Construct categorification from geometries

To construct categorical sl2 actions, the weight categories arise from the
spaces of importance in representation theory like Grassmannians or flag
varieties.

Consider the Grassmannian of k-dimensional subspaces in CN

G(k,N) = {0 ⊂ V ⊂ CN | dimV = k}

Let DbCon(G(k,N)) to be the bounded derived categories of
constructible sheaves on G(k,N). These will be our weight categories
K(λ) = DbCon(G(k,N)), where λ = N − 2k.
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Construct categorification from geometries

We have the following natural correspondence

Fl(k − 1, k) = {0
k−1
⊂ V ′ 1

⊂ V
N−k
⊂ CN}

p1

uu

p2

**

G(k,N) G(k − 1, N)

Here p1 : Fl(k − 1, k) → G(k,N) and p2 : Fl(k − 1, k) → G(k − 1, N)
are natural projections. We define the following functors

E := p2∗p
∗
1 : DbCon(G(k,N)) = K(λ) → DbCon(G(k − 1, N)) = K(λ+ 2)

F := p1∗p
∗
2 : DbCon(G(k − 1, N)) = K(λ+ 2) → DbCon(G(k,N)) = K(λ)

You-Hung Hsu (NCTS) Shifted January 18, 2022 9 / 32
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Construct categorification from geometries

With the categories K(λ) and functors E, F defined above, we have the
following theorem.

Theorem 1 (Beilinson-Lusztig-MacPherson, Chuang-Rouquier)

The categories and functors defined above gives a categorical sl2 action.
This means that the functors defined above satisfy

EF|K(λ)
∼= FE|K(λ)

⊕
Id⊕λ

K(λ) if λ ≥ 0

FE|K(λ)
∼= EF|K(λ)

⊕
Id⊕−λ

K(λ) if λ ≤ 0
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The motivation of our problem

Motivated by the above result, we replace constructible sheaves with
coherent sheaves. Roughly speaking, this means that instead of studying
locally constant functions (constructible sheaves), we study holomorphic
functions (coherent sheaves).

Thus our weight categories K(λ) are the bounded derived categories of
coherent sheaves on G(k,N), which is denoted by DbCoh(G(k,N)),
where λ = N − 2k.
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Our functors

Fl(k − 1, k) = {0
k−1
⊂ V ′ 1

⊂ V
N−k
⊂ CN}

p1

uu

p2

**

G(k,N) G(k − 1, N)

Denoting V,V ′ to be the tautological bundles on Fl(k − 1, k) of rank k,
k− 1 respectively, then there is a natural line bundle V/V ′ on Fl(k− 1, k).
Instead of just pullback and pushforward, we have more functors

Er := p2∗(p
∗
1 ⊗ (V/V ′)r) : DbCoh(G(k,N)) → DbCoh(G(k − 1, N))

Fr := p1∗(p
∗
2 ⊗ (V/V ′)r) : DbCoh(G(k − 1, N)) → DbCoh(G(k,N))

where r ∈ Z.
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The main problem

Problem.
We want to understand how this Lsl2 := sl2 ⊗ C[t, t−1]-like algebra acting
on

⊕
k DbCoh(G(k,N)), where e⊗ tr and f ⊗ ts acting via the functors

Er and Fs respectively for r, s ∈ Z.

We can ask several natural questions, for example,

1 What are the categorical commutator relations between ErFs and
FsEr?

2 What is the algebra that we obtain after decategorifying?

3 If we define the algebra, can we give a definition of its categorical
action like sl2 in the introduction?

You-Hung Hsu (NCTS) Shifted January 18, 2022 14 / 32



14/32

The main problem

Problem.
We want to understand how this Lsl2 := sl2 ⊗ C[t, t−1]-like algebra acting
on

⊕
k DbCoh(G(k,N)), where e⊗ tr and f ⊗ ts acting via the functors

Er and Fs respectively for r, s ∈ Z.
We can ask several natural questions, for example,

1 What are the categorical commutator relations between ErFs and
FsEr?

2 What is the algebra that we obtain after decategorifying?

3 If we define the algebra, can we give a definition of its categorical
action like sl2 in the introduction?

You-Hung Hsu (NCTS) Shifted January 18, 2022 14 / 32



14/32

The main problem

Problem.
We want to understand how this Lsl2 := sl2 ⊗ C[t, t−1]-like algebra acting
on

⊕
k DbCoh(G(k,N)), where e⊗ tr and f ⊗ ts acting via the functors

Er and Fs respectively for r, s ∈ Z.
We can ask several natural questions, for example,

1 What are the categorical commutator relations between ErFs and
FsEr?

2 What is the algebra that we obtain after decategorifying?

3 If we define the algebra, can we give a definition of its categorical
action like sl2 in the introduction?

You-Hung Hsu (NCTS) Shifted January 18, 2022 14 / 32



14/32

The main problem

Problem.
We want to understand how this Lsl2 := sl2 ⊗ C[t, t−1]-like algebra acting
on

⊕
k DbCoh(G(k,N)), where e⊗ tr and f ⊗ ts acting via the functors

Er and Fs respectively for r, s ∈ Z.
We can ask several natural questions, for example,

1 What are the categorical commutator relations between ErFs and
FsEr?

2 What is the algebra that we obtain after decategorifying?

3 If we define the algebra, can we give a definition of its categorical
action like sl2 in the introduction?

You-Hung Hsu (NCTS) Shifted January 18, 2022 14 / 32



15/32

The main result

Our main result answers the above natural questions.

Theorem 2 (Hsu)

(1)The resulting algebra acting on
⊕

k DbCoh(G(k,N)) is a new algebra,
which we call it the shifted q = 0 affine algebra. Denoted by U̇0,N (Lsl2).
(2)We give a definition of the categorical U̇0,N (Lsl2) action.
(3)We verify that there is a categorical U̇0,N (Lsl2) action on⊕

k DbCoh(G(k,N)).

Remark

More generally, we constructed a categorical U̇0,N (Lsln) action on the
derived categories of coherent sheaves on n-step partial flag varieties.
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Tool: Fourier-Mukai (FM) transforms

We use the tool of Fourier-Mukai (FM) transform to help us.

Definition 3

Let X, Y be two smooth projective varieties. A Fourier-Mukai (FM)
kernel is any object P ∈ DbCoh(X × Y ). For such P we define the
associated Fourier-Mukai (FM) transform, which is the functor

ΦP : DbCoh(X) → DbCoh(Y )

F 7→ π2∗(π
∗
1(F)⊗ P)

where π1, π2 are natural projections.
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FM kernels for Er and Fs

Then the functor Er : DbCoh(G(k,N)) → DbCoh(G(k − 1, N))
isomorphic to a FM transform with the kernel

Er1(k,N−k) := ι∗(V/V ′)r ∈ DbCoh(G(k,N)×G(k − 1, N))

where ι : Fl(k − 1, k) → G(k,N)×G(k − 1, N) is the natural inclusion,
i.e., Er

∼= ΦEr1(k,N−k)
.

Similarly, we denote

Fs1(k,N−k) ∈ DbCoh(G(k,N)×G(k + 1, N))

to be the FM kernel for Fs, i.e., Fs ∼= ΦFr1(k,N−k)
.
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Categorical commutator relations between Er and Fs

Then (Er ∗ Fs)1(k,N−k), (Fs ∗ Er)1(k,N−k) ∈ DbCoh(G(k,N)×G(k,N))
are FM kernels for the functors Er ◦ Fs, Fs ◦ Er, respectively.

Er ◦ Fs, Fs ◦ Er : DbCoh(G(k,N)) → DbCoh(G(k,N))

��

(Er ∗ Fs)1(k,N−k), (Fs ∗ Er)1(k,N−k) ∈ DbCoh(G(k,N)×G(k,N))
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Application: Semiorthogonal decomposition

Fixing a triangulated category D, which we may assume it is C-linear.

Definition 4

An object E ∈ Ob(D) is called exceptional if

HomD(E,E[l]) =

{
C if l = 0

0 if l ̸= 0.

Then we define the notion of exceptional collections.

Definition 5

An ordered collection {E1, ..., En}, where Ei ∈ Ob(D) for all 1 ≤ i ≤ n, is
called an exceptional collection if each Ei is exceptional and moreover
HomD(Ei, Ej [l]) = 0 for all i > j and all l ∈ Z.
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A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory linear algebra

D finite dimensional vector space K0(D)
HomD(−,−) Euler form χ =

∑
i(−1)i dimCHomD(−,−[i])

exceptional collections semi-orthogonal vectors

{E1, ..., En} χ(Ei, Ej) =

{
1 if i = j

0 if i > j

Remark

The word ”semi” comes from the fact that the Euler form χ is
NON-symmetric.

You-Hung Hsu (NCTS) Shifted January 18, 2022 20 / 32



20/32

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory linear algebra

D finite dimensional vector space K0(D)

HomD(−,−) Euler form χ =
∑

i(−1)i dimCHomD(−,−[i])
exceptional collections semi-orthogonal vectors

{E1, ..., En} χ(Ei, Ej) =

{
1 if i = j

0 if i > j

Remark

The word ”semi” comes from the fact that the Euler form χ is
NON-symmetric.

You-Hung Hsu (NCTS) Shifted January 18, 2022 20 / 32



20/32

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory linear algebra

D finite dimensional vector space K0(D)
HomD(−,−) Euler form χ =

∑
i(−1)i dimCHomD(−,−[i])

exceptional collections semi-orthogonal vectors

{E1, ..., En} χ(Ei, Ej) =

{
1 if i = j

0 if i > j

Remark

The word ”semi” comes from the fact that the Euler form χ is
NON-symmetric.

You-Hung Hsu (NCTS) Shifted January 18, 2022 20 / 32



20/32

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory linear algebra

D finite dimensional vector space K0(D)
HomD(−,−) Euler form χ =

∑
i(−1)i dimCHomD(−,−[i])

exceptional collections semi-orthogonal vectors

{E1, ..., En} χ(Ei, Ej) =

{
1 if i = j

0 if i > j

Remark

The word ”semi” comes from the fact that the Euler form χ is
NON-symmetric.

You-Hung Hsu (NCTS) Shifted January 18, 2022 20 / 32



20/32

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory linear algebra

D finite dimensional vector space K0(D)
HomD(−,−) Euler form χ =

∑
i(−1)i dimCHomD(−,−[i])

exceptional collections semi-orthogonal vectors

{E1, ..., En} χ(Ei, Ej) =

{
1 if i = j

0 if i > j

Remark

The word ”semi” comes from the fact that the Euler form χ is
NON-symmetric.

You-Hung Hsu (NCTS) Shifted January 18, 2022 20 / 32



20/32

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory linear algebra

D finite dimensional vector space K0(D)
HomD(−,−) Euler form χ =

∑
i(−1)i dimCHomD(−,−[i])

exceptional collections semi-orthogonal vectors

{E1, ..., En} χ(Ei, Ej) =

{
1 if i = j

0 if i > j

Remark

The word ”semi” comes from the fact that the Euler form χ is
NON-symmetric.

You-Hung Hsu (NCTS) Shifted January 18, 2022 20 / 32



21/32

Semiorthogonal decompositions

Then we define the notion of semiorthogonal decompositions, which can
be thought of as a generalization of exceptional collections.

Definition 6

A semiorthogonal decomposition (SOD for short) of D is a sequence of full
triangulated subcategories A1, ...,An such that

1 there is no non-zero Homs from right to left, i.e. HomD(Ai, Aj) = 0
for all Ai ∈ Ob(Ai), Aj ∈ Ob(Aj) where 1 ≤ j < i ≤ n.

2 D is generated by A1, ...,An, i.e. the smallest full triangulated
subcategory containing A1, ...,An equal to D.

We will use the notation D = ⟨A1, ...,An⟩ for a semiorthogonal
decomposition of D with components A1, ...,An.
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SOD given by exceptional collection

Note that an exceptional collection of D naturally gives rise to a SOD of
D.

Let {E1, ..., En} be an exceptional collection of D. Then we have the
following SOD

D = ⟨A, E1, ..., En⟩.

where A = ⟨E1, ..., En⟩⊥ and Ei denote the full triangulated subcategory
generated by the object Ei.

Remark

For a full triangulated subcategory C ⊂ D, we define
C⊥ = {X ∈ Ob(D) | HomD(C,X) = 0 ∀ C ∈ Ob(C)} to be the right
orthogonal to C in D. It is a triangulated subcategories of D.

Remark

An exceptional collection is called full if the subcategory A is zero.

You-Hung Hsu (NCTS) Shifted January 18, 2022 22 / 32



22/32

SOD given by exceptional collection

Note that an exceptional collection of D naturally gives rise to a SOD of
D.
Let {E1, ..., En} be an exceptional collection of D. Then we have the
following SOD

D = ⟨A, E1, ..., En⟩.

where A = ⟨E1, ..., En⟩⊥ and Ei denote the full triangulated subcategory
generated by the object Ei.

Remark

For a full triangulated subcategory C ⊂ D, we define
C⊥ = {X ∈ Ob(D) | HomD(C,X) = 0 ∀ C ∈ Ob(C)} to be the right
orthogonal to C in D. It is a triangulated subcategories of D.

Remark

An exceptional collection is called full if the subcategory A is zero.

You-Hung Hsu (NCTS) Shifted January 18, 2022 22 / 32



22/32

SOD given by exceptional collection

Note that an exceptional collection of D naturally gives rise to a SOD of
D.
Let {E1, ..., En} be an exceptional collection of D. Then we have the
following SOD

D = ⟨A, E1, ..., En⟩.

where A = ⟨E1, ..., En⟩⊥ and Ei denote the full triangulated subcategory
generated by the object Ei.

Remark

For a full triangulated subcategory C ⊂ D, we define
C⊥ = {X ∈ Ob(D) | HomD(C,X) = 0 ∀ C ∈ Ob(C)} to be the right
orthogonal to C in D. It is a triangulated subcategories of D.

Remark

An exceptional collection is called full if the subcategory A is zero.

You-Hung Hsu (NCTS) Shifted January 18, 2022 22 / 32



22/32

SOD given by exceptional collection

Note that an exceptional collection of D naturally gives rise to a SOD of
D.
Let {E1, ..., En} be an exceptional collection of D. Then we have the
following SOD

D = ⟨A, E1, ..., En⟩.

where A = ⟨E1, ..., En⟩⊥ and Ei denote the full triangulated subcategory
generated by the object Ei.

Remark

For a full triangulated subcategory C ⊂ D, we define
C⊥ = {X ∈ Ob(D) | HomD(C,X) = 0 ∀ C ∈ Ob(C)} to be the right
orthogonal to C in D. It is a triangulated subcategories of D.

Remark

An exceptional collection is called full if the subcategory A is zero.

You-Hung Hsu (NCTS) Shifted January 18, 2022 22 / 32



23/32

The Beilinson-Kapranov exceptional collection

The simplest example is given by Beilinson for projective space
PN−1 = G(1, N).

Theorem 7 (Beilinson)

There is a full exceptional collection (thus a SOD)

DbCoh(PN−1) = ⟨OPN−1(−N + 1),OPN−1(−N + 2), ...,OPN−1⟩.

The above result is generalized to Grassmannian G(k,N) by M. Kapranov.
Let V be the tautological rank k bundle on G(k,N). For integers
a, b ≥ 0, we denote by P (a, b) the set of Young diagrams λ such that
λ1 ≤ a and λb+1 = 0, i.e. λ = (λ1, .., λb) with 0 ≤ λb ≤ ... ≤ λ1 ≤ a.
Denote Sλ to be the Schur functor associated to the Young diagram λ.

Theorem 8 (M. Kapranov)

There is a full exceptional collection (thus a SOD)

DbCoh(G(k,N)) = ⟨ SλV ⟩λ∈P (N−k,k).
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Relate to the categorical action

Since we construct an action of U̇0,N (Lsl2) on
⊕

k DbCoh(G(k,N)) via
using FM kernels, we try to relate the Kapranov exceptional collection to
this action.

Fl(1, 2, ..., k)

....

...

F l(k − 1, k)

xx ''

... F l(0, 1)

{{ &&

G(k,N) G(k − 1, N)
Fλ1

1(k,N−k)

oo ... G(1, N) G(0, N) = pt
Fλk

1(0,N)

oo
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Relate to the categorical action

More precisely, by using the Borel-Weil-Bott theorem we get

SλV ∼= Fλ1 ∗ ... ∗ Fλk
1(0,N)

where λ = (λ1, ..., λk) ∈ P (N − k, k). Note that Fλ1 ∗ ... ∗ Fλk
1(0,N) is

the FM kernel for the functor Fλ1(0,N) := Fλ1 ...Fλk
1(0,N).

We know that {SλV}λ∈P (N−k,k) is an exceptional collection, it is natural
to ask the following question.
Question : Given an (abstract) categorical U̇0,N (Lsl2) action on K. Do
the collection of functors

{Fλ1(0,N) : K(0, N) → K(k,N − k)}λ∈P (N−k,k)

behave like an exceptional collection?
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Relate to the categorical action
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SOD of weight categories

Proposition 9 (Hsu)

The functors {Fλ1(0,N)}λ∈P (N−k,k) satisfy the following properties

(1) Hom(Fλ1(0,N),Fλ1(0,N)) ∼= Hom(1(0,N),1(0,N)) (exceptional-like)

(2) Hom(Fλ1(0,N),Fλ′1(0,N)) ∼= 0, if λ <l λ
′ (semiorthogonal property)

where <l is the lexicographical order.

Remark

When the weight categories are K(k,N − k) = DbCoh(G(k,N)), we have
Hom(1(0,N),1(0,N)) ∼= C. This recovers the exceptional collection {SλV}.

Remark

The first property (1) also implies that the functors
Fλ1(0,N) : K(0, N) → K(k,N − k) are fully faithful for λ ∈ P (N − k, k).
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SOD of weight categories

Since Fλ1(0,N) : K(0, N) → K(k,N − k) is fully faithful for
λ ∈ P (N − k, k), it gives an equivalence from K(0, N) to the subcategory
of K(k,N − k) generated by its essential images. By abusing of notation,
we still denote it by K(0, N).

Hence we have the following result.

Theorem 10 (Hsu)

Given a categorical U̇0,N (Lsl2) action K. There is a SOD

K(k,N − k) = ⟨A(k,N − k),

(
N

k

)
− copies of K(0, N)⟩

where A(k,N − k) is the orthogonal complement.

Remark

In fact, we prove the above theorem for the sln case.
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Natural questions

From the above result, we can ask the following two questions.

Question1 : Is there a geometric example
⊕

k DbCoh(X(k,N−k)) for

categorical U̇0,N (Lsl2) action such that the orthogonal complement
A(k,N − k) ̸= 0? (Note that when X(k,N−k) = G(k,N),
A(k,N − k) = 0 for all k).
Question2 : If so, i.e. DbCoh(X(k,N−k)) = ⟨A(k,N − k), ....⟩ with
A(k,N − k) ̸= 0 for all k, then is

⊕
k A(k,N − k) a (categorical)

sub-representation of U̇0,N (Lsl2)?
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Recent works

Theorem 11 (Jiang-Leung, 2019)

Let X be a smooth projective variety, G a coherent sheaf on X with
homological dimension ≤ 1. This implies that G admits a resolution
E−1 → E0 → G with E0, E−1 locally free.

Then we have the following
SOD

DbCoh(P(G)) = ⟨DbCoh(P(H),DbCoh(X)(1), ...,DbCoh(X)(r)⟩

where H := Ext1(G,OX) and r := rkE0 − rkE−1 is the rank for G.

Remark

When G is locally free, this result recover the projective bundle formula by
Orlov. Moreover, Jiang-Leung prove the above result for X to be a regular
scheme.
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Current work: Relative Grassmannian

Theorem 12 (Y. Toda, 2021)

Let X and G be the same as in Theorem 11. Then there is a SOD for
DbCoh(Gr(G, d))) which extends the result by Jiang-Leung, where
Gr(G, d) is the Grassmannian parametrizes rank d locally free quotient of
G.

The tools used by Toda include (-1)-shifted symplectic structure, Koszul
duality, categorified Hall algebra. We wish to give an elementary proof by
constructing a categorical action of U̇0,N (Lsl2) on

⊕
dDbCoh(Gr(G, d))),

and we expect the SOD we obtain will be the same as the one by
Jiang-Leung and Toda but provide an extra representation theoretic
interpretation of the orthogonal complements (e.g. P(Ext1(G,OX))).

Remark

If fact, P(Ext1(G,OX)) is a Springer-type resolution of the singular locus
Sing(G) := {x ∈ X | rkGx > r}, and r := rkE0 − rkE−1 = rkG.
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Thank you for your attention.
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