Semiorthogonal decomposition via categorical representation theory

You-Hung Hsu

Joint work with Yu Zhao (IPMU) in progress

NCTS
January 18, 2022

Table of Contents

(1) Introduction to $\mathfrak{s l}_{2}$ and its action on categories
(2) Main result
(3) Related results and current work

Table of Contents

(1) Introduction to $\mathfrak{s l}_{2}$ and its action on categories
(2) Main result
(3) Related results and current work

Remark

In this talk, we work over the field \mathbb{C} of complex numbers.
(1) Introduction to $\mathfrak{s l}_{2}$ and its action on categories

(2) Main result

(3) Related results and current work

Representation of $\mathfrak{s l}_{2}$

$$
\mathfrak{s l}_{2}(\mathbb{C})=\left\{A \in \operatorname{End}\left(\mathbb{C}^{2}\right) \mid \operatorname{Tr}(A)=0\right\}
$$

Representation of $\mathfrak{s l}_{2}$

$\mathfrak{s l}_{2}(\mathbb{C})=\left\{A \in \operatorname{End}\left(\mathbb{C}^{2}\right) \mid \operatorname{Tr}(A)=0\right\}$ has the standard basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

with the following commutator relations

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

Representation of $\mathfrak{s l}_{2}$

$\mathfrak{s l}_{2}(\mathbb{C})=\left\{A \in \operatorname{End}\left(\mathbb{C}^{2}\right) \mid \operatorname{Tr}(A)=0\right\}$ has the standard basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

with the following commutator relations

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h .
$$

A representation of $\mathfrak{s l}_{2}(\mathbb{C})$ consists of the following data

- A collection of vector spaces (weight spaces) $V_{\lambda}, \lambda \in \mathbb{Z}$

Representation of $\mathfrak{s l}_{2}$

$\mathfrak{s l}_{2}(\mathbb{C})=\left\{A \in \operatorname{End}\left(\mathbb{C}^{2}\right) \mid \operatorname{Tr}(A)=0\right\}$ has the standard basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

with the following commutator relations

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

A representation of $\mathfrak{s l}_{2}(\mathbb{C})$ consists of the following data

- A collection of vector spaces (weight spaces) $V_{\lambda}, \lambda \in \mathbb{Z}$
- Linear maps $e: V_{\lambda} \rightarrow V_{\lambda+2}, f: V_{\lambda} \rightarrow V_{\lambda-2}$

Representation of $\mathfrak{s l}_{2}$

$\mathfrak{s l}_{2}(\mathbb{C})=\left\{A \in \operatorname{End}\left(\mathbb{C}^{2}\right) \mid \operatorname{Tr}(A)=0\right\}$ has the standard basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

with the following commutator relations

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

A representation of $\mathfrak{s l}_{2}(\mathbb{C})$ consists of the following data

- A collection of vector spaces (weight spaces) $V_{\lambda}, \lambda \in \mathbb{Z}$
- Linear maps $e: V_{\lambda} \rightarrow V_{\lambda+2}, f: V_{\lambda} \rightarrow V_{\lambda-2}$
- $\left.(e f-f e)\right|_{V_{\lambda}}=\lambda I d_{V_{\lambda}}$

Representation of $\mathfrak{s l}_{2}$

The above data of the representation can be characterized in the following picture

such that $\left.(e f-f e=h)\right|_{V_{\lambda}}=\lambda I d_{V_{\lambda}}$.

Representation of $\mathfrak{s l}_{2}$

The above data of the representation can be characterized in the following picture

such that $\left.(e f-f e=h)\right|_{V_{\lambda}}=\lambda I d_{V_{\lambda}}$.

Remark

We can consider a more general case, which is the representation of the quantum group $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$.

Representation of $\mathfrak{s l}_{2}$

The above data of the representation can be characterized in the following picture
such that $\left.(e f-f e=h)\right|_{V_{\lambda}}=\lambda I d_{V_{\lambda}}$.

Remark

We can consider a more general case, which is the representation of the quantum group $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$. The third data is replaced by $\left.(e f-f e)\right|_{V_{\lambda}}=[\lambda]_{q} I d_{V_{\lambda}}$, where $[\lambda]_{q}:=q^{\lambda-1}+q^{\lambda-3}+\ldots+q^{-\lambda+1}$ is the quantum integer.

Categorification

Categorification

Main idea: Replace vector spaces by categories and linear maps by functors.

Categorification

Main idea: Replace vector spaces by categories and linear maps by functors.

- Such a process can help us to understand deeper structures.
- It has many applications, e.g., modular representation theory, equivalence of categories, knot homologies....etc.
- Geometry is a good resource for producing categories.

Categorification

Main idea: Replace vector spaces by categories and linear maps by functors.

- Such a process can help us to understand deeper structures.
- It has many applications, e.g., modular representation theory, equivalence of categories, knot homologies....etc.
- Geometry is a good resource for producing categories.
- It can be decategorified to recover the original vector space.

The categorical $\mathfrak{s l}_{2}$ action

weight space $V_{\lambda}, \lambda \in \mathbb{Z} \leadsto$ weight category $\mathcal{K}(\lambda) \lambda \in \mathbb{Z}$

The categorical $\mathfrak{s l}_{2}$ action

weight space $V_{\lambda}, \lambda \in \mathbb{Z} \leadsto$ weight category $\mathcal{K}(\lambda) \lambda \in \mathbb{Z}$

$$
\ldots V_{\lambda} \underset{f}{\stackrel{e}{\longleftrightarrow}} V_{\lambda+2} \ldots \sim \ldots \mathcal{K}(\lambda) \xrightarrow[\mathrm{F}]{\underset{\mathrm{E}}{\rightleftarrows}} \mathcal{K}(\lambda+2) \ldots
$$

The categorical $\mathfrak{s l}_{2}$ action

weight space $V_{\lambda}, \lambda \in \mathbb{Z} \leadsto$ weight category $\mathcal{K}(\lambda) \lambda \in \mathbb{Z}$

$$
\ldots V_{\lambda} \underset{f}{\stackrel{e}{\longleftrightarrow}} V_{\lambda+2} \ldots \sim \ldots \mathcal{K}(\lambda) \underset{\mathrm{F}}{\stackrel{\mathrm{E}}{\longleftrightarrow}} \mathcal{K}(\lambda+2) \ldots
$$

Thus the picture at categorical level becomes

The categorical $\mathfrak{s l}_{2}$ action

weight space $V_{\lambda}, \lambda \in \mathbb{Z} \leadsto$ weight category $\mathcal{K}(\lambda) \lambda \in \mathbb{Z}$

$$
\ldots V_{\lambda} \underset{f}{\stackrel{e}{\longleftrightarrow}} V_{\lambda+2} \ldots \sim \ldots \mathcal{K}(\lambda) \underset{\mathrm{F}}{\stackrel{\mathrm{E}}{\longleftrightarrow}} \mathcal{K}(\lambda+2) \ldots
$$

Thus the picture at categorical level becomes

The commutator relation $\left.(e f-f e)\right|_{V_{\lambda}}=\lambda I d_{V_{\lambda}}$ should be lifted to

The categorical $\mathfrak{s l}_{2}$ action

weight space $V_{\lambda}, \lambda \in \mathbb{Z} \leadsto$ weight category $\mathcal{K}(\lambda) \lambda \in \mathbb{Z}$

$$
\ldots V_{\lambda} \underset{f}{\underset{f}{\longleftrightarrow}} V_{\lambda+2} \ldots \sim \ldots \mathcal{K}(\lambda) \underset{\mathrm{F}}{\stackrel{\mathrm{E}}{\longleftrightarrow}} \mathcal{K}(\lambda+2) \ldots
$$

Thus the picture at categorical level becomes

The commutator relation $\left.(e f-f e)\right|_{V_{\lambda}}=\lambda I d_{V_{\lambda}}$ should be lifted to

$$
\left.\left.\mathrm{EF}\right|_{\mathcal{K}(\lambda)} \cong \mathrm{FE}\right|_{\mathcal{K}(\lambda)} \bigoplus \operatorname{ld}_{\mathcal{K}(\lambda)}^{\oplus \lambda}, \text { if } \lambda \geq 0
$$

The categorical $\mathfrak{s l}_{2}$ action

weight space $V_{\lambda}, \lambda \in \mathbb{Z} \leadsto$ weight category $\mathcal{K}(\lambda) \lambda \in \mathbb{Z}$

$$
\ldots V_{\lambda} \underset{f}{\underset{f}{\longleftrightarrow}} V_{\lambda+2} \ldots \sim \ldots \mathcal{K}(\lambda) \underset{\mathrm{F}}{\stackrel{\mathrm{E}}{\longleftrightarrow}} \mathcal{K}(\lambda+2) \ldots
$$

Thus the picture at categorical level becomes

The commutator relation $\left.(e f-f e)\right|_{V_{\lambda}}=\lambda I d_{V_{\lambda}}$ should be lifted to

$$
\begin{aligned}
& \left.\left.\mathrm{EF}\right|_{\mathcal{K}(\lambda)} \cong \mathrm{FE}\right|_{\mathcal{K}(\lambda)} \bigoplus \mathrm{Id}_{\mathcal{K}(\lambda)}^{\oplus \lambda}, \text { if } \lambda \geq 0 \\
& \left.\left.\mathrm{FE}\right|_{\mathcal{K}(\lambda)} \cong \mathrm{EF}\right|_{\mathcal{K}(\lambda)} \bigoplus \operatorname{ld}_{\mathcal{K}(\lambda)}^{\oplus-\lambda}, \text { if } \lambda \leq 0
\end{aligned}
$$

Construct categorification from geometries

To construct categorical $\mathfrak{s l}_{2}$ actions, the weight categories arise from the spaces of importance in representation theory like Grassmannians or flag varieties.

Construct categorification from geometries

To construct categorical $\mathfrak{s l}_{2}$ actions, the weight categories arise from the spaces of importance in representation theory like Grassmannians or flag varieties.
Consider the Grassmannian of k-dimensional subspaces in \mathbb{C}^{N}

$$
\mathbb{G}(k, N)=\left\{0 \subset V \subset \mathbb{C}^{N} \mid \operatorname{dim} V=k\right\}
$$

Construct categorification from geometries

To construct categorical $\mathfrak{s l}_{2}$ actions, the weight categories arise from the spaces of importance in representation theory like Grassmannians or flag varieties.
Consider the Grassmannian of k-dimensional subspaces in \mathbb{C}^{N}

$$
\mathbb{G}(k, N)=\left\{0 \subset V \subset \mathbb{C}^{N} \mid \operatorname{dim} V=k\right\}
$$

Let $\mathcal{D}^{b} \operatorname{Con}(\mathbb{G}(k, N))$ to be the bounded derived categories of constructible sheaves on $\mathbb{G}(k, N)$. These will be our weight categories $\mathcal{K}(\lambda)=\mathcal{D}^{b} \operatorname{Con}(\mathbb{G}(k, N))$, where $\lambda=N-2 k$.

Construct categorification from geometries

We have the following natural correspondence

Construct categorification from geometries

We have the following natural correspondence

Here $p_{1}: F l(k-1, k) \rightarrow \mathbb{G}(k, N)$ and $p_{2}: F l(k-1, k) \rightarrow \mathbb{G}(k-1, N)$ are natural projections.

Construct categorification from geometries

We have the following natural correspondence

Here $p_{1}: F l(k-1, k) \rightarrow \mathbb{G}(k, N)$ and $p_{2}: F l(k-1, k) \rightarrow \mathbb{G}(k-1, N)$ are natural projections. We define the following functors

$$
\begin{aligned}
& \mathrm{E}:=p_{2 *} p_{1}^{*}: \mathcal{D}^{b} \operatorname{Con}(\mathbb{G}(k, N))=\mathcal{K}(\lambda) \rightarrow \mathcal{D}^{b} \operatorname{Con}(\mathbb{G}(k-1, N))=\mathcal{K}(\lambda+2) \\
& \mathrm{F}:=p_{1 *} p_{2}^{*}: \mathcal{D}^{b} \operatorname{Con}(\mathbb{G}(k-1, N))=\mathcal{K}(\lambda+2) \rightarrow \mathcal{D}^{b} \operatorname{Con}(\mathbb{G}(k, N))=\mathcal{K}(\lambda)
\end{aligned}
$$

Construct categorification from geometries

With the categories $\mathcal{K}(\lambda)$ and functors E, F defined above, we have the following theorem.

Construct categorification from geometries

With the categories $\mathcal{K}(\lambda)$ and functors E, F defined above, we have the following theorem.

Theorem 1 (Beilinson-Lusztig-MacPherson, Chuang-Rouquier)
The categories and functors defined above gives a categorical $\mathfrak{s l}_{2}$ action. This means that the functors defined above satisfy

$$
\begin{aligned}
& \left.\left.\mathrm{EF}\right|_{\mathcal{K}(\lambda)} \cong \mathrm{FE}\right|_{\mathcal{K}(\lambda)} \bigoplus \operatorname{ld}_{\mathcal{K}(\lambda)}^{\oplus \lambda} \text { if } \lambda \geq 0 \\
& \left.\left.\mathrm{FE}\right|_{\mathcal{K}(\lambda)} \cong \mathrm{EF}\right|_{\mathcal{K}(\lambda)} \bigoplus \operatorname{ld}_{\mathcal{K}(\lambda)}^{\oplus-\lambda} \text { if } \lambda \leq 0
\end{aligned}
$$

(1) Introduction to $\mathfrak{s l}_{2}$ and its action on categories
(2) Main result

(3) Related results and current work

The motivation of our problem

Motivated by the above result, we replace constructible sheaves with coherent sheaves. Roughly speaking, this means that instead of studying locally constant functions (constructible sheaves), we study holomorphic functions (coherent sheaves).

The motivation of our problem

Motivated by the above result, we replace constructible sheaves with coherent sheaves. Roughly speaking, this means that instead of studying locally constant functions (constructible sheaves), we study holomorphic functions (coherent sheaves).
Thus our weight categories $\mathcal{K}(\lambda)$ are the bounded derived categories of coherent sheaves on $\mathbb{G}(k, N)$, which is denoted by $\mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$, where $\lambda=N-2 k$.

Our functors

Our functors

Denoting $\mathcal{V}, \mathcal{V}^{\prime}$ to be the tautological bundles on $F l(k-1, k)$ of rank k, $k-1$ respectively, then there is a natural line bundle $\mathcal{V} / \mathcal{V}^{\prime}$ on $F l(k-1, k)$.

Our functors

Denoting $\mathcal{V}, \mathcal{V}^{\prime}$ to be the tautological bundles on $F l(k-1, k)$ of rank k, $k-1$ respectively, then there is a natural line bundle $\mathcal{V} / \mathcal{V}^{\prime}$ on $F l(k-1, k)$. Instead of just pullback and pushforward, we have more functors

$$
\begin{aligned}
& \mathrm{E}_{r}:=p_{2 *}\left(p_{1}^{*} \otimes\left(\mathcal{V} / \mathcal{V}^{\prime}\right)^{r}\right): \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N)) \rightarrow \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k-1, N)) \\
& \mathrm{F}_{r}:=p_{1 *}\left(p_{2}^{*} \otimes\left(\mathcal{V} / \mathcal{V}^{\prime}\right)^{r}\right): \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k-1, N)) \rightarrow \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))
\end{aligned}
$$

where $r \in \mathbb{Z}$.

The main problem

Problem.

We want to understand how this $L \mathfrak{s l}_{2}:=\mathfrak{s l}_{2} \otimes \mathbb{C}\left[t, t^{-1}\right]$-like algebra acting on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$, where $e \otimes t^{r}$ and $f \otimes t^{s}$ acting via the functors E_{r} and F_{s} respectively for $r, s \in \mathbb{Z}$.

The main problem

Problem.

We want to understand how this $L \mathfrak{s l}_{2}:=\mathfrak{s l}_{2} \otimes \mathbb{C}\left[t, t^{-1}\right]$-like algebra acting on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$, where $e \otimes t^{r}$ and $f \otimes t^{s}$ acting via the functors E_{r} and F_{s} respectively for $r, s \in \mathbb{Z}$.
We can ask several natural questions, for example,
(1) What are the categorical commutator relations between $\mathrm{E}_{r} \mathrm{~F}_{s}$ and $\mathrm{F}_{s} \mathrm{E}_{r}$?

The main problem

Problem.

We want to understand how this $L \mathfrak{s l}_{2}:=\mathfrak{s l}_{2} \otimes \mathbb{C}\left[t, t^{-1}\right]$-like algebra acting on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$, where $e \otimes t^{r}$ and $f \otimes t^{s}$ acting via the functors E_{r} and F_{s} respectively for $r, s \in \mathbb{Z}$.
We can ask several natural questions, for example,
(1) What are the categorical commutator relations between $\mathrm{E}_{r} \mathrm{~F}_{s}$ and $\mathrm{F}_{s} \mathrm{E}_{r}$?
(2) What is the algebra that we obtain after decategorifying?

The main problem

Problem.

We want to understand how this $L \mathfrak{s l}_{2}:=\mathfrak{s l}_{2} \otimes \mathbb{C}\left[t, t^{-1}\right]$-like algebra acting on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$, where $e \otimes t^{r}$ and $f \otimes t^{s}$ acting via the functors E_{r} and F_{s} respectively for $r, s \in \mathbb{Z}$.
We can ask several natural questions, for example,
(1) What are the categorical commutator relations between $\mathrm{E}_{r} \mathrm{~F}_{s}$ and $\mathrm{F}_{s} \mathrm{E}_{r}$?
(2) What is the algebra that we obtain after decategorifying?
(3) If we define the algebra, can we give a definition of its categorical action like $\mathfrak{s l}_{2}$ in the introduction?

The main result

Our main result answers the above natural questions.

The main result

Our main result answers the above natural questions.

Theorem 2 (Hsu)

(1)The resulting algebra acting on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$ is a new algebra, which we call it the shifted $q=0$ affine algebra. Denoted by $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$.

The main result

Our main result answers the above natural questions.

Theorem 2 (Hsu)

(1)The resulting algebra acting on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$ is a new algebra, which we call it the shifted $q=0$ affine algebra. Denoted by $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$. (2) We give a definition of the categorical $\mathcal{U}_{0, N}\left({\left.L \mathfrak{s l}_{2}\right) \text { action. }}^{2}\right.$

The main result

Our main result answers the above natural questions.

Theorem 2 (Hsu)

(1)The resulting algebra acting on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$ is a new algebra, which we call it the shifted $q=0$ affine algebra. Denoted by $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$. (2) We give a definition of the categorical $\dot{U}_{0, N}\left(L \mathfrak{s l}_{2}\right)$ action. (3)We verify that there is a categorical $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$ action on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$.

The main result

Our main result answers the above natural questions.

Theorem 2 (Hsu)

(1)The resulting algebra acting on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$ is a new algebra, which we call it the shifted $q=0$ affine algebra. Denoted by $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$. (2)We give a definition of the categorical $\dot{\mathcal{U}}_{0, N}\left(L \operatorname{sl}_{2}\right)$ action. (3)We verify that there is a categorical $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$ action on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$.

Remark

More generally, we constructed a categorical $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{n}\right)$ action on the derived categories of coherent sheaves on n-step partial flag varieties.

Tool: Fourier-Mukai (FM) transforms

We use the tool of Fourier-Mukai (FM) transform to help us.

Tool: Fourier-Mukai (FM) transforms

We use the tool of Fourier-Mukai (FM) transform to help us.

Definition 3

Let X, Y be two smooth projective varieties. A Fourier-Mukai (FM) kernel is any object $\mathcal{P} \in \mathcal{D}^{b} \operatorname{Coh}(X \times Y)$. For such \mathcal{P} we define the associated Fourier-Mukai (FM) transform, which is the functor

$$
\begin{gathered}
\Phi_{\mathcal{P}}: \mathcal{D}^{b} \operatorname{Coh}(X) \rightarrow \mathcal{D}^{b} \operatorname{Coh}(Y) \\
\mathcal{F} \mapsto \pi_{2 *}\left(\pi_{1}^{*}(\mathcal{F}) \otimes \mathcal{P}\right)
\end{gathered}
$$

where π_{1}, π_{2} are natural projections.

FM kernels for E_{r} and F_{s}

Then the functor $\mathrm{E}_{r}: \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N)) \rightarrow \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k-1, N))$ isomorphic to a FM transform with the kernel

$$
\mathcal{E}_{r} \mathbf{1}_{(k, N-k)}:=\iota_{*}\left(\mathcal{V} / \mathcal{V}^{\prime}\right)^{r} \in \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N) \times \mathbb{G}(k-1, N))
$$

where $\iota: F l(k-1, k) \rightarrow \mathbb{G}(k, N) \times \mathbb{G}(k-1, N)$ is the natural inclusion, i.e., $\mathrm{E}_{r} \cong \Phi_{\mathcal{E}_{r} \mathbf{1}_{(k, N-k)}}$.

FM kernels for E_{r} and F_{s}

Then the functor $\mathbb{E}_{r}: \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N)) \rightarrow \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k-1, N))$ isomorphic to a FM transform with the kernel

$$
\mathcal{E}_{r} \mathbf{1}_{(k, N-k)}:=\iota_{*}\left(\mathcal{V} / \mathcal{V}^{\prime}\right)^{r} \in \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N) \times \mathbb{G}(k-1, N))
$$

where $\iota: F l(k-1, k) \rightarrow \mathbb{G}(k, N) \times \mathbb{G}(k-1, N)$ is the natural inclusion, i.e., $\mathrm{E}_{r} \cong \Phi_{\mathcal{E}_{r} \mathbf{1}_{(k, N-k)}}$. Similarly, we denote

$$
\mathcal{F}_{s} \mathbf{1}_{(k, N-k)} \in \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N) \times \mathbb{G}(k+1, N))
$$

to be the FM kernel for F_{s}, i.e., $\mathrm{F}_{s} \cong \Phi_{\mathcal{F}_{r} \mathbf{1}_{(k, N-k)}}$.

Categorical commutator relations between E_{r} and F_{s}

Then $\left(\mathcal{E}_{r} * \mathcal{F}_{s}\right) \mathbf{1}_{(k, N-k)},\left(\mathcal{F}_{s} * \mathcal{E}_{r}\right) \mathbf{1}_{(k, N-k)} \in \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N) \times \mathbb{G}(k, N))$ are FM kernels for the functors $\mathrm{E}_{r} \circ \mathrm{~F}_{s}, \mathrm{~F}_{s} \circ \mathrm{E}_{r}$, respectively.

Categorical commutator relations between E_{r} and F_{s}

Then $\left(\mathcal{E}_{r} * \mathcal{F}_{s}\right) \mathbf{1}_{(k, N-k)},\left(\mathcal{F}_{s} * \mathcal{E}_{r}\right) \mathbf{1}_{(k, N-k)} \in \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N) \times \mathbb{G}(k, N))$ are FM kernels for the functors $\mathrm{E}_{r} \circ \mathrm{~F}_{s}, \mathrm{~F}_{s} \circ \mathrm{E}_{r}$, respectively.

$$
\begin{gathered}
\mathrm{E}_{r} \circ \mathrm{~F}_{s}, \mathrm{~F}_{s} \circ \mathrm{E}_{r}: \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N)) \rightarrow \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N)) \\
\left(\mathcal{E}_{r} * \mathcal{F}_{s}\right) \mathbf{1}_{(k, N-k)},\left(\mathcal{F}_{s} * \mathcal{E}_{r}\right) \mathbf{1}_{(k, N-k)} \in \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N) \times \mathbb{G}(k, N))
\end{gathered}
$$

Application: Semiorthogonal decomposition

Fixing a triangulated category \mathcal{D}, which we may assume it is \mathbb{C}-linear.

Application: Semiorthogonal decomposition

Fixing a triangulated category \mathcal{D}, which we may assume it is \mathbb{C}-linear.

Definition 4

An object $E \in \operatorname{Ob}(\mathcal{D})$ is called exceptional if

$$
\operatorname{Hom}_{\mathcal{D}}(E, E[l])= \begin{cases}\mathbb{C} & \text { if } l=0 \\ 0 & \text { if } l \neq 0\end{cases}
$$

Application: Semiorthogonal decomposition

Fixing a triangulated category \mathcal{D}, which we may assume it is \mathbb{C}-linear.

Definition 4

An object $E \in \operatorname{Ob}(\mathcal{D})$ is called exceptional if

$$
\operatorname{Hom}_{\mathcal{D}}(E, E[l])= \begin{cases}\mathbb{C} & \text { if } l=0 \\ 0 & \text { if } l \neq 0\end{cases}
$$

Then we define the notion of exceptional collections.

Definition 5

An ordered collection $\left\{E_{1}, \ldots, E_{n}\right\}$, where $E_{i} \in \mathrm{Ob}(\mathcal{D})$ for all $1 \leq i \leq n$, is called an exceptional collection if each E_{i} is exceptional and moreover $\operatorname{Hom}_{\mathcal{D}}\left(E_{i}, E_{j}[l]\right)=0$ for all $i>j$ and all $l \in \mathbb{Z}$.

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.
category theory linear algebra
D
finite dimensional vector space $K_{0}(\mathcal{D})$

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.
category theory
D
$\operatorname{Hom}_{\mathcal{D}}(-,-)$
linear algebra
finite dimensional vector space $K_{0}(\mathcal{D})$
Euler form $\chi=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathcal{D}}(-,-[i])$

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory	linear algebra
\mathcal{D}	finite dimensional vector space $K_{0}(\mathcal{D})$
$\operatorname{Hom}_{\mathcal{D}}(-,-)$	Euler form $\chi=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathcal{D}}(-,-[i])$
exceptional collections	semi-orthogonal vectors

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory	linear algebra
\mathcal{D}	finite dimensional vector space $K_{0}(\mathcal{D})$
$\operatorname{Hom}_{\mathcal{D}}(-,-)$	Euler form $\chi=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathcal{D}}(-,-[i])$
exceptional collections	semi-orthogonal vectors
$\left\{E_{1}, \ldots, E_{n}\right\}$	$\chi\left(E_{i}, E_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i>j\end{cases}$

A brief interpretation

We can interpret exceptional collections in the following rough dictionary.

category theory	linear algebra
\mathcal{D}	finite dimensional vector space $K_{0}(\mathcal{D})$
$\operatorname{Hom}_{\mathcal{D}}(-,-)$	Euler form $\chi=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathcal{D}}(-,-[i])$
exceptional collections	semi-orthogonal vectors
$\left\{E_{1}, \ldots, E_{n}\right\}$	$\chi\left(E_{i}, E_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i>j\end{cases}$

Remark

The word "semi" comes from the fact that the Euler form χ is NON-symmetric.

Semiorthogonal decompositions

Then we define the notion of semiorthogonal decompositions, which can be thought of as a generalization of exceptional collections.

Semiorthogonal decompositions

Then we define the notion of semiorthogonal decompositions, which can be thought of as a generalization of exceptional collections.

Definition 6

A semiorthogonal decomposition (SOD for short) of \mathcal{D} is a sequence of full triangulated subcategories $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ such that
(1) there is no non-zero Homs from right to left, i.e. $\operatorname{Hom}_{\mathcal{D}}\left(A_{i}, A_{j}\right)=0$ for all $A_{i} \in \operatorname{Ob}\left(\mathcal{A}_{i}\right), A_{j} \in \mathrm{Ob}\left(\mathcal{A}_{j}\right)$ where $1 \leq j<i \leq n$.
(2) \mathcal{D} is generated by $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$, i.e. the smallest full triangulated subcategory containing $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ equal to \mathcal{D}.
We will use the notation $\mathcal{D}=\left\langle\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right\rangle$ for a semiorthogonal decomposition of \mathcal{D} with components $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$.

SOD given by exceptional collection

Note that an exceptional collection of \mathcal{D} naturally gives rise to a SOD of \mathcal{D}.

SOD given by exceptional collection

Note that an exceptional collection of \mathcal{D} naturally gives rise to a SOD of \mathcal{D}.
Let $\left\{E_{1}, \ldots, E_{n}\right\}$ be an exceptional collection of \mathcal{D}. Then we have the following SOD

$$
\mathcal{D}=\left\langle\mathcal{A}, E_{1}, \ldots, E_{n}\right\rangle
$$

where $\mathcal{A}=\left\langle E_{1}, \ldots, E_{n}\right\rangle^{\perp}$ and E_{i} denote the full triangulated subcategory generated by the object E_{i}.

SOD given by exceptional collection

Note that an exceptional collection of \mathcal{D} naturally gives rise to a SOD of \mathcal{D}.
Let $\left\{E_{1}, \ldots, E_{n}\right\}$ be an exceptional collection of \mathcal{D}. Then we have the following SOD

$$
\mathcal{D}=\left\langle\mathcal{A}, E_{1}, \ldots, E_{n}\right\rangle
$$

where $\mathcal{A}=\left\langle E_{1}, \ldots, E_{n}\right\rangle^{\perp}$ and E_{i} denote the full triangulated subcategory generated by the object E_{i}.

Remark

For a full triangulated subcategory $\mathcal{C} \subset \mathcal{D}$, we define $\mathcal{C}^{\perp}=\left\{X \in \operatorname{Ob}(\mathcal{D}) \mid \operatorname{Hom}_{\mathcal{D}}(C, X)=0 \forall C \in \mathrm{Ob}(\mathcal{C})\right\}$ to be the right orthogonal to \mathcal{C} in \mathcal{D}. It is a triangulated subcategories of \mathcal{D}.

SOD given by exceptional collection

Note that an exceptional collection of \mathcal{D} naturally gives rise to a SOD of \mathcal{D}.
Let $\left\{E_{1}, \ldots, E_{n}\right\}$ be an exceptional collection of \mathcal{D}. Then we have the following SOD

$$
\mathcal{D}=\left\langle\mathcal{A}, E_{1}, \ldots, E_{n}\right\rangle
$$

where $\mathcal{A}=\left\langle E_{1}, \ldots, E_{n}\right\rangle^{\perp}$ and E_{i} denote the full triangulated subcategory generated by the object E_{i}.

Remark

For a full triangulated subcategory $\mathcal{C} \subset \mathcal{D}$, we define $\mathcal{C}^{\perp}=\left\{X \in \operatorname{Ob}(\mathcal{D}) \mid \operatorname{Hom}_{\mathcal{D}}(C, X)=0 \forall C \in \mathrm{Ob}(\mathcal{C})\right\}$ to be the right orthogonal to \mathcal{C} in \mathcal{D}. It is a triangulated subcategories of \mathcal{D}.

Remark

An exceptional collection is called full if the subcategory \mathcal{A} is zero.

The Beilinson-Kapranov exceptional collection

The simplest example is given by Beilinson for projective space $\mathbb{P}^{N-1}=\mathbb{G}(1, N)$.

Theorem 7 (Beilinson)

There is a full exceptional collection (thus a SOD)

$$
\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}^{N-1}\right)=\left\langle\mathcal{O}_{\mathbb{P}^{N-1}}(-N+1), \mathcal{O}_{\mathbb{P}^{N-1}}(-N+2), \ldots, \mathcal{O}_{\mathbb{P}^{N-1}}\right\rangle
$$

The Beilinson-Kapranov exceptional collection

The simplest example is given by Beilinson for projective space $\mathbb{P}^{N-1}=\mathbb{G}(1, N)$.

Theorem 7 (Beilinson)

There is a full exceptional collection (thus a SOD)

$$
\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}^{N-1}\right)=\left\langle\mathcal{O}_{\mathbb{P}^{N-1}}(-N+1), \mathcal{O}_{\mathbb{P}^{N-1}}(-N+2), \ldots, \mathcal{O}_{\mathbb{P}^{N-1}}\right\rangle
$$

The above result is generalized to Grassmannian $\mathbb{G}(k, N)$ by M . Kapranov.

The Beilinson-Kapranov exceptional collection

The simplest example is given by Beilinson for projective space $\mathbb{P}^{N-1}=\mathbb{G}(1, N)$.

Theorem 7 (Beilinson)

There is a full exceptional collection (thus a SOD)

$$
\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}^{N-1}\right)=\left\langle\mathcal{O}_{\mathbb{P}^{N-1}}(-N+1), \mathcal{O}_{\mathbb{P}^{N-1}}(-N+2), \ldots, \mathcal{O}_{\mathbb{P}^{N-1}}\right\rangle
$$

The above result is generalized to Grassmannian $\mathbb{G}(k, N)$ by M . Kapranov. Let \mathcal{V} be the tautological rank k bundle on $\mathbb{G}(k, N)$.

The Beilinson-Kapranov exceptional collection

The simplest example is given by Beilinson for projective space $\mathbb{P}^{N-1}=\mathbb{G}(1, N)$.

Theorem 7 (Beilinson)

There is a full exceptional collection (thus a SOD)

$$
\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}^{N-1}\right)=\left\langle\mathcal{O}_{\mathbb{P}^{N-1}}(-N+1), \mathcal{O}_{\mathbb{P}^{N-1}}(-N+2), \ldots, \mathcal{O}_{\mathbb{P}^{N-1}}\right\rangle
$$

The above result is generalized to Grassmannian $\mathbb{G}(k, N)$ by M . Kapranov. Let \mathcal{V} be the tautological rank k bundle on $\mathbb{G}(k, N)$. For integers $a, b \geq 0$, we denote by $P(a, b)$ the set of Young diagrams λ such that $\lambda_{1} \leq a$ and $\lambda_{b+1}=0$, i.e. $\lambda=\left(\lambda_{1}, . ., \lambda_{b}\right)$ with $0 \leq \lambda_{b} \leq \ldots \leq \lambda_{1} \leq a$.

The Beilinson-Kapranov exceptional collection

The simplest example is given by Beilinson for projective space $\mathbb{P}^{N-1}=\mathbb{G}(1, N)$.

Theorem 7 (Beilinson)

There is a full exceptional collection (thus a SOD)

$$
\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}^{N-1}\right)=\left\langle\mathcal{O}_{\mathbb{P}^{N-1}}(-N+1), \mathcal{O}_{\mathbb{P}^{N-1}}(-N+2), \ldots, \mathcal{O}_{\mathbb{P}^{N-1}}\right\rangle
$$

The above result is generalized to Grassmannian $\mathbb{G}(k, N)$ by M . Kapranov. Let \mathcal{V} be the tautological rank k bundle on $\mathbb{G}(k, N)$. For integers $a, b \geq 0$, we denote by $P(a, b)$ the set of Young diagrams λ such that $\lambda_{1} \leq a$ and $\lambda_{b+1}=0$, i.e. $\lambda=\left(\lambda_{1}, . ., \lambda_{b}\right)$ with $0 \leq \lambda_{b} \leq \ldots \leq \lambda_{1} \leq a$. Denote \mathbb{S}_{λ} to be the Schur functor associated to the Young diagram λ.

The Beilinson-Kapranov exceptional collection

The simplest example is given by Beilinson for projective space $\mathbb{P}^{N-1}=\mathbb{G}(1, N)$.

Theorem 7 (Beilinson)

There is a full exceptional collection (thus a SOD)

$$
\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}^{N-1}\right)=\left\langle\mathcal{O}_{\mathbb{P}^{N-1}}(-N+1), \mathcal{O}_{\mathbb{P}^{N-1}}(-N+2), \ldots, \mathcal{O}_{\mathbb{P}^{N-1}}\right\rangle
$$

The above result is generalized to Grassmannian $\mathbb{G}(k, N)$ by M . Kapranov. Let \mathcal{V} be the tautological rank k bundle on $\mathbb{G}(k, N)$. For integers $a, b \geq 0$, we denote by $P(a, b)$ the set of Young diagrams λ such that $\lambda_{1} \leq a$ and $\lambda_{b+1}=0$, i.e. $\lambda=\left(\lambda_{1}, . ., \lambda_{b}\right)$ with $0 \leq \lambda_{b} \leq \ldots \leq \lambda_{1} \leq a$. Denote \mathbb{S}_{λ} to be the Schur functor associated to the Young diagram λ.

Theorem 8 (M. Kapranov)

There is a full exceptional collection (thus a SOD)

$$
\mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))=\left\langle\mathbb{S}_{\lambda} \mathcal{V}\right\rangle_{\lambda \in P(N-k, k)} .
$$

Relate to the categorical action

Since we construct an action of $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{S l}_{2}\right)$ on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$ via using FM kernels, we try to relate the Kapranov exceptional collection to this action.

Relate to the categorical action

Since we construct an action of $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{S l}_{2}\right)$ on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$ via using FM kernels, we try to relate the Kapranov exceptional collection to this action.

$$
F l(1,2, \ldots, k)
$$

Relate to the categorical action

Since we construct an action of $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{S l}_{2}\right)$ on $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$ via using FM kernels, we try to relate the Kapranov exceptional collection to this action.

Relate to the categorical action

More precisely, by using the Borel-Weil-Bott theorem we get

$$
\mathbb{S}_{\lambda} \mathcal{V} \cong \mathcal{F}_{\lambda_{1}} * \ldots * \mathcal{F}_{\lambda_{k}} \mathbf{1}_{(0, N)}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in P(N-k, k)$. Note that $\mathcal{F}_{\lambda_{1}} * \ldots * \mathcal{F}_{\lambda_{k}} \mathbf{1}_{(0, N)}$ is the FM kernel for the functor $\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}:=\mathrm{F}_{\lambda_{1}} \ldots \mathrm{~F}_{\lambda_{k}} \mathbf{1}_{(0, N)}$.

Relate to the categorical action

More precisely, by using the Borel-Weil-Bott theorem we get

$$
\mathbb{S}_{\lambda} \mathcal{V} \cong \mathcal{F}_{\lambda_{1}} * \ldots * \mathcal{F}_{\lambda_{k}} \mathbf{1}_{(0, N)}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in P(N-k, k)$. Note that $\mathcal{F}_{\lambda_{1}} * \ldots * \mathcal{F}_{\lambda_{k}} \mathbf{1}_{(0, N)}$ is the FM kernel for the functor $\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}:=\mathrm{F}_{\lambda_{1}} \ldots \mathrm{~F}_{\lambda_{k}} \mathbf{1}_{(0, N)}$.
We know that $\left\{\mathbb{S}_{\lambda} \mathcal{V}\right\}_{\lambda \in P(N-k, k)}$ is an exceptional collection, it is natural to ask the following question.

Relate to the categorical action

More precisely, by using the Borel-Weil-Bott theorem we get

$$
\mathbb{S}_{\lambda} \mathcal{V} \cong \mathcal{F}_{\lambda_{1}} * \ldots * \mathcal{F}_{\lambda_{k}} \mathbf{1}_{(0, N)}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in P(N-k, k)$. Note that $\mathcal{F}_{\lambda_{1}} * \ldots * \mathcal{F}_{\lambda_{k}} \mathbf{1}_{(0, N)}$ is the FM kernel for the functor $\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}:=\mathrm{F}_{\lambda_{1}} \ldots \mathrm{~F}_{\lambda_{k}} \mathbf{1}_{(0, N)}$.
We know that $\left\{\mathbb{S}_{\lambda} \mathcal{V}\right\}_{\lambda \in P(N-k, k)}$ is an exceptional collection, it is natural to ask the following question.
Question: Given an (abstract) categorical $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$ action on \mathcal{K}. Do the collection of functors

$$
\left\{\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}: \mathcal{K}(0, N) \rightarrow \mathcal{K}(k, N-k)\right\}_{\lambda \in P(N-k, k)}
$$

behave like an exceptional collection?

SOD of weight categories

Proposition 9 (Hsu)

The functors $\left\{\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}\right\}_{\lambda \in P(N-k, k)}$ satisfy the following properties
(1) $\operatorname{Hom}\left(\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}, \mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}\right) \cong \operatorname{Hom}\left(\mathbf{1}_{(0, N)}, \mathbf{1}_{(0, N)}\right)$ (exceptional-like)
(2) $\operatorname{Hom}\left(\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}, \mathrm{F}_{\lambda^{\prime}} \mathbf{1}_{(0, N)}\right) \cong 0$, if $\lambda<_{l} \lambda^{\prime}$ (semiorthogonal property)
where $<_{l}$ is the lexicographical order.

SOD of weight categories

Proposition 9 (Hsu)

The functors $\left\{\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}\right\}_{\lambda \in P(N-k, k)}$ satisfy the following properties
(1) $\operatorname{Hom}\left(\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}, \mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}\right) \cong \operatorname{Hom}\left(\mathbf{1}_{(0, N)}, \mathbf{1}_{(0, N)}\right)$ (exceptional-like)
(2) $\operatorname{Hom}\left(\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}, \mathrm{F}_{\lambda^{\prime}} \mathbf{1}_{(0, N)}\right) \cong 0$, if $\lambda<_{l} \lambda^{\prime}$ (semiorthogonal property)
where $<_{l}$ is the lexicographical order.

Remark

When the weight categories are $\mathcal{K}(k, N-k)=\mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$, we have $\operatorname{Hom}\left(\mathbf{1}_{(0, N)}, \mathbf{1}_{(0, N)}\right) \cong \mathbb{C}$. This recovers the exceptional collection $\left\{\mathbb{S}_{\lambda} \mathcal{V}\right\}$.

SOD of weight categories

Proposition 9 (Hsu)

The functors $\left\{\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}\right\}_{\lambda \in P(N-k, k)}$ satisfy the following properties
(1) $\operatorname{Hom}\left(\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}, \mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}\right) \cong \operatorname{Hom}\left(\mathbf{1}_{(0, N)}, \mathbf{1}_{(0, N)}\right)$ (exceptional-like)
(2) $\operatorname{Hom}\left(\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}, \mathrm{F}_{\lambda^{\prime}} \mathbf{1}_{(0, N)}\right) \cong 0$, if $\lambda<_{l} \lambda^{\prime}$ (semiorthogonal property) where $<_{l}$ is the lexicographical order.

Remark

When the weight categories are $\mathcal{K}(k, N-k)=\mathcal{D}^{b} \operatorname{Coh}(\mathbb{G}(k, N))$, we have $\operatorname{Hom}\left(\mathbf{1}_{(0, N)}, \mathbf{1}_{(0, N)}\right) \cong \mathbb{C}$. This recovers the exceptional collection $\left\{\mathbb{S}_{\lambda} \mathcal{V}\right\}$.

Remark

The first property (1) also implies that the functors
$\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}: \mathcal{K}(0, N) \rightarrow \mathcal{K}(k, N-k)$ are fully faithful for $\lambda \in P(N-k, k)$.

SOD of weight categories

Since $\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}: \mathcal{K}(0, N) \rightarrow \mathcal{K}(k, N-k)$ is fully faithful for $\lambda \in P(N-k, k)$, it gives an equivalence from $\mathcal{K}(0, N)$ to the subcategory of $\mathcal{K}(k, N-k)$ generated by its essential images. By abusing of notation, we still denote it by $\mathcal{K}(0, N)$.

SOD of weight categories

Since $\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}: \mathcal{K}(0, N) \rightarrow \mathcal{K}(k, N-k)$ is fully faithful for $\lambda \in P(N-k, k)$, it gives an equivalence from $\mathcal{K}(0, N)$ to the subcategory of $\mathcal{K}(k, N-k)$ generated by its essential images. By abusing of notation, we still denote it by $\mathcal{K}(0, N)$. Hence we have the following result.

Theorem 10 (Hsu)

Given a categorical $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$ action \mathcal{K}. There is a SOD

$$
\mathcal{K}(k, N-k)=\left\langle\mathcal{A}(k, N-k),\binom{N}{k} \text { - copies of } \mathcal{K}(0, N)\right\rangle
$$

where $\mathcal{A}(k, N-k)$ is the orthogonal complement.

SOD of weight categories

Since $\mathrm{F}_{\lambda} \mathbf{1}_{(0, N)}: \mathcal{K}(0, N) \rightarrow \mathcal{K}(k, N-k)$ is fully faithful for $\lambda \in P(N-k, k)$, it gives an equivalence from $\mathcal{K}(0, N)$ to the subcategory of $\mathcal{K}(k, N-k)$ generated by its essential images. By abusing of notation, we still denote it by $\mathcal{K}(0, N)$. Hence we have the following result.

Theorem 10 (Hsu)

Given a categorical $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$ action \mathcal{K}. There is a SOD

$$
\mathcal{K}(k, N-k)=\left\langle\mathcal{A}(k, N-k),\binom{N}{k}-\text { copies of } \mathcal{K}(0, N)\right\rangle
$$

where $\mathcal{A}(k, N-k)$ is the orthogonal complement.

Remark

In fact, we prove the above theorem for the $\mathfrak{s l}_{n}$ case.

(2) Main result

(3) Related results and current work

Natural questions

From the above result, we can ask the following two questions.

Natural questions

From the above result, we can ask the following two questions. Question 1 : Is there a geometric example $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}\left(X_{(k, N-k)}\right)$ for categorical $\dot{\mathcal{U}}_{0, N}\left(L \operatorname{sl}_{2}\right)$ action such that the orthogonal complement $\mathcal{A}(k, N-k) \neq 0$? (Note that when $X_{(k, N-k)}=\mathbb{G}(k, N)$, $\mathcal{A}(k, N-k)=0$ for all $k)$.

Natural questions

From the above result, we can ask the following two questions. Question 1 : Is there a geometric example $\bigoplus_{k} \mathcal{D}^{b} \operatorname{Coh}\left(X_{(k, N-k)}\right)$ for categorical $\dot{\mathcal{U}}_{0, N}\left(L \operatorname{sl}_{2}\right)$ action such that the orthogonal complement $\mathcal{A}(k, N-k) \neq 0$? (Note that when $X_{(k, N-k)}=\mathbb{G}(k, N)$, $\mathcal{A}(k, N-k)=0$ for all $k)$.
Question2 : If so, i.e. $\mathcal{D}^{b} \operatorname{Coh}\left(X_{(k, N-k)}\right)=\langle\mathcal{A}(k, N-k), \ldots\rangle$ with $\mathcal{A}(k, N-k) \neq 0$ for all k, then is $\bigoplus_{k} \mathcal{A}(k, N-k)$ a (categorical) sub-representation of $\dot{\mathcal{U}}_{0, N}\left(L \mathfrak{s l}_{2}\right)$?

Recent works

Theorem 11 (Jiang-Leung, 2019)

Let X be a smooth projective variety, \mathcal{G} a coherent sheaf on X with homological dimension ≤ 1. This implies that \mathcal{G} admits a resolution $\mathcal{E}^{-1} \rightarrow \mathcal{E}^{0} \rightarrow \mathcal{G}$ with $\mathcal{E}^{0}, \mathcal{E}^{-1}$ locally free.

Recent works

Theorem 11 (Jiang-Leung, 2019)

Let X be a smooth projective variety, \mathcal{G} a coherent sheaf on X with homological dimension ≤ 1. This implies that \mathcal{G} admits a resolution $\mathcal{E}^{-1} \rightarrow \mathcal{E}^{0} \rightarrow \mathcal{G}$ with $\mathcal{E}^{0}, \mathcal{E}^{-1}$ locally free. Then we have the following SOD

$$
\mathcal{D}^{b} \operatorname{Coh}(\mathbb{P}(\mathcal{G}))=\left\langle\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}(\mathcal{H}), \mathcal{D}^{b} \operatorname{Coh}(X)(1), \ldots, \mathcal{D}^{b} \operatorname{Coh}(X)(r)\right\rangle\right.
$$

where $\mathcal{H}:=\mathcal{E} x t^{1}\left(\mathcal{G}, \mathcal{O}_{X}\right)$ and $r:=r k \mathcal{E}^{0}-r k \mathcal{E}^{-1}$ is the rank for \mathcal{G}.

Recent works

Theorem 11 (Jiang-Leung, 2019)

Let X be a smooth projective variety, \mathcal{G} a coherent sheaf on X with homological dimension ≤ 1. This implies that \mathcal{G} admits a resolution $\mathcal{E}^{-1} \rightarrow \mathcal{E}^{0} \rightarrow \mathcal{G}$ with $\mathcal{E}^{0}, \mathcal{E}^{-1}$ locally free. Then we have the following SOD

$$
\mathcal{D}^{b} \operatorname{Coh}(\mathbb{P}(\mathcal{G}))=\left\langle\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}(\mathcal{H}), \mathcal{D}^{b} \operatorname{Coh}(X)(1), \ldots, \mathcal{D}^{b} \operatorname{Coh}(X)(r)\right\rangle\right.
$$

where $\mathcal{H}:=\mathcal{E} x t^{1}\left(\mathcal{G}, \mathcal{O}_{X}\right)$ and $r:=r k \mathcal{E}^{0}-r k \mathcal{E}^{-1}$ is the rank for \mathcal{G}.

Remark

When \mathcal{G} is locally free, this result recover the projective bundle formula by Orlov.

Recent works

Theorem 11 (Jiang-Leung, 2019)

Let X be a smooth projective variety, \mathcal{G} a coherent sheaf on X with homological dimension ≤ 1. This implies that \mathcal{G} admits a resolution $\mathcal{E}^{-1} \rightarrow \mathcal{E}^{0} \rightarrow \mathcal{G}$ with $\mathcal{E}^{0}, \mathcal{E}^{-1}$ locally free. Then we have the following SOD

$$
\mathcal{D}^{b} \operatorname{Coh}(\mathbb{P}(\mathcal{G}))=\left\langle\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}(\mathcal{H}), \mathcal{D}^{b} \operatorname{Coh}(X)(1), \ldots, \mathcal{D}^{b} \operatorname{Coh}(X)(r)\right\rangle\right.
$$

where $\mathcal{H}:=\mathcal{E} x t^{1}\left(\mathcal{G}, \mathcal{O}_{X}\right)$ and $r:=r k \mathcal{E}^{0}-r k \mathcal{E}^{-1}$ is the rank for \mathcal{G}.

Remark

When \mathcal{G} is locally free, this result recover the projective bundle formula by Orlov. Moreover, Jiang-Leung prove the above result for X to be a regular scheme.

Current work: Relative Grassmannian

Theorem 12 (Y. Toda, 2021)

Let X and \mathcal{G} be the same as in Theorem 11. Then there is a SOD for $\left.\mathcal{D}^{b} \operatorname{Coh}(\operatorname{Gr}(\mathcal{G}, d))\right)$ which extends the result by Jiang-Leung, where $\operatorname{Gr}(\mathcal{G}, d)$ is the Grassmannian parametrizes rank d locally free quotient of \mathcal{G}.

Current work: Relative Grassmannian

```
Theorem }12\mathrm{ (Y. Toda, 2021)
Let X and \mathcal{G be the same as in Theorem 11. Then there is a SOD for}
D }\mp@subsup{}{}{b}\operatorname{Coh}(\operatorname{Gr}(\mathcal{G},d))) which extends the result by Jiang-Leung, wher
Gr(\mathcal{G},d) is the Grassmannian parametrizes rank d locally free quotient of
G.
```

The tools used by Toda include (-1)-shifted symplectic structure, Koszul duality, categorified Hall algebra.

Current work: Relative Grassmannian

```
Theorem }12\mathrm{ (Y. Toda, 2021)
Let X and \mathcal{G be the same as in Theorem 11. Then there is a SOD for}
\mathcal{D}}\mp@subsup{}{}{b}\operatorname{Coh}(\operatorname{Gr}(\mathcal{G},d))) which extends the result by Jiang-Leung, wher
Gr(\mathcal{G},d) is the Grassmannian parametrizes rank d locally free quotient of
G.
```

The tools used by Toda include (-1)-shifted symplectic structure, Koszul duality, categorified Hall algebra. We wish to give an elementary proof by constructing a categorical action of $\dot{\mathcal{U}}_{0, N}\left(\operatorname{ssl}_{2}\right)$ on $\left.\bigoplus_{d} \mathcal{D}^{b} \operatorname{Coh}(\operatorname{Gr}(\mathcal{G}, d))\right)$,

Current work: Relative Grassmannian

```
Theorem }12\mathrm{ (Y. Toda, 2021)
Let X and \mathcal{G be the same as in Theorem 11. Then there is a SOD for} \(\left.\mathcal{D}^{b} \operatorname{Coh}(\operatorname{Gr}(\mathcal{G}, d))\right)\) which extends the result by Jiang-Leung, where \(\operatorname{Gr}(\mathcal{G}, d)\) is the Grassmannian parametrizes rank \(d\) locally free quotient of \(\mathcal{G}\).
```

The tools used by Toda include (-1)-shifted symplectic structure, Koszul duality, categorified Hall algebra. We wish to give an elementary proof by constructing a categorical action of $\dot{\mathcal{U}}_{0, N}\left(L \operatorname{sl}_{2}\right)$ on $\left.\bigoplus_{d} \mathcal{D}^{b} \operatorname{Coh}(G r(\mathcal{G}, d))\right)$, and we expect the SOD we obtain will be the same as the one by Jiang-Leung and Toda but provide an extra representation theoretic interpretation of the orthogonal complements (e.g. $\mathbb{P}\left(\mathcal{E} x t^{1}\left(\mathcal{G}, \mathcal{O}_{X}\right)\right)$).

Current work: Relative Grassmannian

Theorem 12 (Y. Toda, 2021)

Let X and \mathcal{G} be the same as in Theorem 11. Then there is a SOD for $\left.\mathcal{D}^{b} \operatorname{Coh}(\operatorname{Gr}(\mathcal{G}, d))\right)$ which extends the result by Jiang-Leung, where $\operatorname{Gr}(\mathcal{G}, d)$ is the Grassmannian parametrizes rank d locally free quotient of \mathcal{G}.

The tools used by Toda include (-1)-shifted symplectic structure, Koszul duality, categorified Hall algebra. We wish to give an elementary proof by constructing a categorical action of $\dot{\mathcal{U}}_{0, N}\left(L \operatorname{sl}_{2}\right)$ on $\left.\bigoplus_{d} \mathcal{D}^{b} \operatorname{Coh}(\operatorname{Gr}(\mathcal{G}, d))\right)$, and we expect the SOD we obtain will be the same as the one by Jiang-Leung and Toda but provide an extra representation theoretic interpretation of the orthogonal complements (e.g. $\mathbb{P}\left(\mathcal{E} x t^{1}\left(\mathcal{G}, \mathcal{O}_{X}\right)\right)$).

Remark

If fact, $\mathbb{P}\left(\mathcal{E} x t^{1}\left(\mathcal{G}, \mathcal{O}_{X}\right)\right)$ is a Springer-type resolution of the singular locus $\operatorname{Sing}(\mathcal{G}):=\left\{x \in X \mid \mathrm{rk} \mathcal{G}_{x}>r\right\}$, and $r:=\mathrm{rk} \mathcal{E}^{0}-\mathrm{rk} \mathcal{E}^{-1}=\mathrm{rk} \mathcal{G}$.

Thank you for your attention.

